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ABSTRACT 

  

We present a Bayesian network (BN) model for forecasting Association Football match 

outcomes. Both objective and subjective information are considered for prediction, and 

we demonstrate how probabilities transform at each level of model component, 

whereby predictive distributions follow hierarchical levels of Bayesian inference. The 

model was used to generate forecasts for each match of the 2011/12 English Premier 

League (EPL) season, and forecasts were published online prior to the start of each 

match. Profitability, risk and uncertainty are evaluated by considering various unit-

based betting procedures against published market odds. Compared to a previously 

published successful BN model, the model presented in this paper is less complex and 

is able to generate even more profitable returns. 

 

Keyworks: Bayesian networks, expert systems, football betting, football forecasts, 

subjective information 

  

1 INTRODUCTION 

 

Association Football (hereafter referred to as simply football) is the most popular sport 

internationally (Dunning & Joseph A. M., 1993; Mueller et al., 1996; Dunning E., 1999), and 

attracts an increasing share of the multi-billion dollar gambling industry; particularly after its 

introduction online (Constantinou & Fenton, 2013b). This is one of the primary reasons why 

we currently observe extensive attention paid to football odds by both academic research 
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groups and industrial organisations who look to profit from potential market inefficiencies. 

While numerous academic papers exist which focus on football match forecasts, only a few of 

them appear to consider profitability as an assessment tool for determining a model's 

forecasting capability. 

 Pope and Peel (1989) evaluated a simulation of bets against published market odds in 

accordance with the recommendations of a panel of newspapers experts. They showed that 

even though there was no evidence of abnormal returns, there was some indication that the 

expert opinions were more valuable towards the end of the football season. Dixon and Coles 

(1997) were the first to evaluate the strength of football teams for the purpose of generating 

profit against published market odds with the use of a time-dependent Poisson regression model 

based on Maher’s (1982) model. They formed a simple betting strategy for which the model 

was profitable at sufficiently high levels of discrepancy between the model and the 

bookmakers' probabilities. However, these high discrepancy levels returns were based on as 

low as 10 sample values; at lower discrepancy levels and with a larger sample size the model 

was unprofitable. The authors suggested that for a football forecast model to generate profit 

against bookmakers’ odds without eliminating the in-built profit margin, “it requires a 

determination of probabilities that is sufficiently more accurate from those obtained by 

published odds”. A similar paper by Dixon and Pope (2004) was also published on the basis 

of 1993-96 data and reported similar results. Rue and Salvesen (2000) suggested a Bayesian 

dynamic generalised linear model to estimate the time-dependent skills of all the teams in the 

English Premier League (EPL) and English Division 1. They assessed the model against the 

odds provided by Intertops, a firm which is located in Antigua in the West Indies, and 

demonstrated profits of 39.6% after winning 15 bets out of a total of 48 for EPL matches, and 

54% after winning 27 bets out of a total of 64 for Division 1 matches.  

 In an attempt to exploit the favourite-longshot bias for profitable opportunities, Poisson 

and Negative Binomial models have been used to estimate the number of goals scored by a 

team (Cain et al., 2000). The conclusion was that even though the fixed odds offered against 

particular score outcomes did seem to offer profitable betting opportunities in some cases, these 

were few in number. Goddard and Asimakopoulos (2004) proposed an ordered probit 

regression model to forecast EPL match results in an attempt to test the weak-form efficiency 

of prices in the fixed-odds betting market. To evaluate the model they considered seasons 1999 

and 2000. Even though they reported a loss of −10.5% for overall performance, the model 

appeared to be profitable (on a pre-tax gross basis) at the start and at the end of every season†. 

Using a benchmark statistical model with a large number of quantifiable variables relevant to 

match outcomes Forrest et al. (2005) examined the effectiveness of forecasts based on 

published odds and forecasts generated. They considered five different bookmaking firms for 

five consecutive seasons (1998 to 2003) and demonstrated that the model generated negative 

returns ranging from −10% to −12% depending on the bookmaking firm, but the loss was 

reduced to −6.6%  when using the best available odds by exploiting arbitrage between 

bookmaking firms.  

 (Graham & Stott, 2008) attempted to investigate the rationality of bookmakers’ odds 

using an ordered probit model to generate predictions for EPL matches. By considering 

William Hill odds, they followed the betting strategy introduced in (Dixon & Coles, 1997; 

Dixon & Pope, 2004) and reported negative returns ranging from −2.5% to −15% for all 

discrepancy levels during seasons 2004 to 2006. In the absence of any consistently successful 

model against market odds, the authors claimed that “if it was successful, it would not have 

been published”. (Hvattum and Arntzen, 2010) considered the ELO rating system for football 

                                                           
† Gross pre-taxed returns of +3.1% and +1.5% for respective seasons beginning 1999 and 2000, and gross 

returns of +8% for respective seasons ending 1999 and 2000. 
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match prediction, although it was initially developed by (ELO, 1978) for assessing the strength 

of international chess players. Even though the ratings appeared to be useful in encoding the 

information of past results for measuring the strength of a team, resulting forecasts reported 

negative expected returns against numerous seasons of published odds using various betting 

strategies. However, Constantinou and Fenton (2013a) later developed a novel rating technique 

(called pi-rating) that outperformed considerably the two ELO rating variants of (Hvattum & 

Arntzen, 2010), in terms of profitability, over a period of five EPL season. 

(Constantinou et al., 2012) recently presented a Bayesian network model that was used 

to generate forecasts about the EPL matches during season 2010/11, by considering both 

objective and subjective information for prediction. Forecasts were published online (pi-

football, 2010) prior to the start of each match, and this was the first academic study to 

demonstrate profitability that was consistent against published market odds over a sufficiently 

high number of betting trials without eliminating the bookmakers' profit margin. 

 In this paper we present a Bayesian network model for forecasting football outcomes 

that is based on the approach in (Constantinou et al., 2012), but with reduced complexity and 

higher forecasting capability (which we explain in detail in Sections 2, 3 and 4). The paper is 

organised as follows: Section 2 describes the model; Section 3 presents the various betting 

procedures along with a Bayesian network component for assessing the risks involved under 

each of the procedures; Section 4 discusses the results; Section 5 provides our concluding 

remarks. 

 

2 THE MODEL 

 

In this section we first provide a brief overview of the model summarising the main differences 

to the approach in (Constantinou et al., 2012). We then describe the technical components of 

the model in subsections. 

 As in (Constantinou et al., 2012) we have used the AgenaRisk Bayesian network tool 

to build the model. The most important differentiator between AgenaRisk and other Bayesian 

network tools is its ability to properly incorporate continuous variables, without any constraint, 

and without the need for static discretisation. It does this through its revolutionary dynamic 

discretisation algorithm that produces results with far greater accuracy than is possible 

otherwise. The dynamic discretisation algorithm (Neil et al., 2010) uses entropy error as the 

basis for approximation. In outline, the algorithm follows these steps: 

 

1. Convert the BN to a Junction Tree (JT) and choose an initial discretisation for all 

continuous variables. 

2. Calculate the Node Probability Table (NPT) of each node given the current 

discretisation. 

3. Enter evidence and perform global propagation on the JT, using standard JT algorithms. 

4. Query the BN to get posterior marginals for each node, compute the approximate 

relative entropy error, and check if it satisfies the convergence criteria. 

5. If not, create a new discretisation for the node by splitting those intervals with highest 

entropy error. 

6. Repeat the process by recalculating the NPTs and propagating the BN, and then 

querying to get the marginals and then split intervals with highest entropy error. 

7. Continue to iterate until the model converges to an acceptable level of accuracy.  

 

This dynamic discretisation approach allows more accuracy in the regions that matter and 

incurs less storage space over static discretisations. In the implementation of the algorithm the 

user can select the number of iterations and convergence criteria, and hence can go for 
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arbitrarily high precision (at the expense of increased computation times). Details about the 

role of qualitative judgments and how inference is done are provided in (Fenton et al., 2007; 

Neil et al., 2010). 

 The model is constructed on the basis of three generic factors: team strength, form, and 

fatigue with motivation. There are model components corresponding to each of the three 

factors. The components are inferred hierarchically and at each level of hierarchy a match 

forecast is generated. This helps us understand how the probabilities transform at each level 

and determine the effectiveness of each model component by assessing the probability 

distributions generated at each level. Specifically: 

 

1. At level 1, match forecasts of type {𝑝(𝐻), 𝑝(𝐷), 𝑝(𝐴)}‡ are generated based on each 

team’s strength (𝑆), where an 𝑆 prior is formulated according to observed and expected 

results (𝑃) of relevant match instances of the current season, and team inconsistencies 

(𝐼) given relevant final league point totals from the five most recent seasons; 

 

2. At level 2, posterior predictive distributions of 𝑆 (from level 1) are formulated based 

on team form (𝐹); 
 

3. At level 3, posterior predictive distributions of 𝑆 (from level 2) are formulated based 

on team fatigue and motivation (𝑀). 
 

Thus, the model follows hierarchical levels of Bayesian inference such that 𝑆1 → 𝑆2  → 𝑆3, 

where 𝑆1 = 𝑝(𝑆|𝑃, 𝐼), 𝑆2 = 𝑝(𝑆|𝑆1, 𝐹), and 𝑆3 = 𝑝(𝑆|𝑆2,𝑀).  
 The variable 𝑆 is a ~𝑇𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎, 0, 114)§ probability density function and at each 

level of hierarchy represents a prediction of the team's strength which is measured in total 

league points. The distribution of 𝑆 is summarised in 14 predetermined ranks (𝑆𝑅) as presented 

in Table 1, whereby the granularity of the 14 ranks ensures that, for any match combination of 

parameters 𝑆𝑅, sufficient data points exist for a reasonably well informed match forecast prior. 

In particular, match forecasts given 𝑆𝑅 are formulated on the basis of relevant historical match 

outcomes**. Hence, the underlying approach generates forecasts that are ‘anonymous’ in the 

sense that historical outcomes are not restricted by the name of the team. For example, given a 

match between Manchester United and Newcastle United, and assuming their respective 𝑆 

values are 85(𝑆𝑅 = 2) and 62(𝑆𝑅 = 7), the resulting forecasts will represent: “a team with a 

probability density function 𝑆(𝑆𝑅) and a maximum likelihood estimation of 85(2) plays against 

a team with a probability density function 𝑆(𝑆𝑅 ) and a maximum likelihood estimation of 

62(7)” instead of: “Man United plays against Newcastle”. Accordingly, a team’s 𝑆 distribution 

varies throughout the season, and it is possible for teams to share similar such distributions at 

certain periods throughout the season. 

 

 

 

 

 

 

 

                                                           
‡ Corresponding to home win, draw, and away win. 
§ Truncated Normal where the endpoints are the respective minimum and maximum number of points a team can 

accumulate in an EPL season (38 games with 3 points for a win). 
** The database consists of the home, draw and away results of all the EPL matches from season 1993/94 to 

2010/11 inclusive (a total of 6624 occurrences). This information is available online at (Football-Data, 2012). 
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Table 1. How 𝑆 → 𝑆𝑅 is defined in 14 predetermined ranks, based on (Constantinou et al., 2012). 

 
 

𝑆 

 

>89 

 

85-89 

 

80-84 

 

75-79 

 

70-74 

...(intervals of 5 

points) 

 

25-29 

 

20-24 

 

<20 

𝑆𝑅 1 

 

2 3 4 5 ... 12 13 14 

          

Figure 1 illustrates a simplified model topology of the overall Bayesian network model. 

Figure G.1 presents the actual outcomes of the Arsenal vs. Liverpool match as forecasted on 

August 20th 2011 and demonstrates how match forecasts transform on the basis of hierarchical 

posterior predictive distributions of S beliefs. The observed outcome was A (score was 0-2). 

Table G.1 provides a brief description of all the model parameters. 

 

The primary differences with the BN model proposed in (Constantinou et al., 2012) are: 

 

1. P, which formulates the prior predictive distribution of 𝑆, is now measured using a 

straightforward 𝐵𝑒𝑡𝑎 − 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 approach (which we describe in detail in Section 2.1 

below), rather than the complex non-symmetric Bayesian parameter learning approach; 

 

2. Model components which correspond to each of the generic factors have been both 

decreased in number and simplified in an attempt to reduce model complexity. 

Specifically:  

 

a) The number of variables in component 𝐹 has decreased from 21 (10 for each 

team plus one representing discrepancy) to 10 (5 for each team). In particular, 

instead of providing distinct subjective beliefs about the availability of the 

Primary Key Player, the Secondary Key Player, the Tertiary Key Player, and 

the Remaining First Team Players, we now introduce a single subjective 

variable called Availability of players who resulted in current form. Further, 

there is no Home Form and Away Form, but rather a single variable called 

Form which represents the most recent (and overall) form of a team. This 

variable is taken into consideration when playing both home and away. As we 

demonstrate in Section 4.2 below, this modification not only simplified the 

model, but also resulted in notably increased profitability. 

 

b) The two previously proposed model components of Fatigue and 

Psychological Impact have been merged into the single component 𝑀, and 

the number of variables (which correspond to each of the two competing 

teams) has been decreased from a total of 28 to 18 (9 for each team). In 

particular, instead of requiring indications about the number of first team 

players rested during the last match in an attempt to measure Restness, which 

is later used to diminish tiredness, we now directly provide this information 

in a single subjective variable called Toughness of previous match (i.e. the 

subjective indication of toughness will be lower if we already know that some 

first team players were rested). Further, the beliefs regarding managerial 

impact, team spirit, motivation, and the expert's degree of certainty with 

regards to their subjective indications are now replaced by a single subjective 

variable called Motivation (this follows the same rational as with the 

toughness of previous match). 
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3. In the previous model, the subjective components were used to directly revise the 

probability distribution of match forecasts in an ordinal manner (i.e. a function was 

used to skew the predictive distribution of a match forecast towards a home win or an 

away win based on subjective proximity). Instead of modifying the match forecast 

directly, we now let the subjective components modify each team's distribution 𝑆 , 

which serve as parents for formulating match forecasts. Thus, match forecasts are now 

always formulated based on relevant historical data (i.e. no skewness), but given 

modified distributions of 𝑆  as a consequence of one or more positive or negative 

subjective indications. This change does not necessarily reduce model complexity, but 

rather improves model sophistication and thus, forecasting capability. 

 

4. In the previous model, the values of each of the subjective components (i.e. form, 

fatigue and psychological impact) were compared between the two teams, and a 

revision in prediction was only made on the basis of discrepancies between the 

components (e.g. the team with better form received an increased probability to win). 

This implies that match forecasts are not revised if both teams have high (or low) levels 

of form (i.e. no discrepancy). The problem with this is that, if we assume that high 

levels of form increase a team's distribution 𝑆 by 20 points, there is still a difference 

between the match 𝑆𝐻𝑂𝑀𝐸 = 60 versus 𝑆𝐴𝑊𝐴𝑌 = 30, and another 𝑆𝐻𝑂𝑀𝐸 = 80 versus 

𝑆𝐴𝑊𝐴𝑌 = 50. Consequently, in the new model we do not perform comparisons when it 

comes to subjective components, but we instead allow each of the components to have 

a direct impact on each team's distribution 𝑆. Again, this change does not necessarily 

reduce model complexity but rather improves model sophistication.  

 

5. The impact of each model component is now inferred hierarchically; implying that 

model components now follow a non-linear weighting when revising distribution 𝑆 (i.e. 

model components computed first have less impact); in contrast to the previous model, 

where the three subjective components had identical impact on match forecasts. The 

hierarchical computation also decreases the time required to calculate posterior 

probabilities. 
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Figure 1. Simplified model topology of the overall Bayesian network. 

 

2.1. Level 1 Component: Team Performance (𝑃) and Inconsistency (𝐼) 
 

At level 1, 𝑃 is modelled using the 𝐵𝑒𝑡𝑎 − 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 approach. The 𝐵𝑒𝑡𝑎 distributions serve 

as conjugate distributions of the 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 distributions, formulating a compound distribution 

such that the 𝑝 parameter of the 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 distribution is being randomly drawn from the 𝐵𝑒𝑡𝑎 

distribution. In our model, the 𝐵𝑒𝑡𝑎  distributions 𝑝(𝑊𝑖𝑛) ,   𝑝(𝐷𝑟𝑎𝑤)  and 𝑝(𝐿𝑜𝑠𝑒)  (with 

hyperparameters 𝛼 and 𝛽 priors based on relevant historical data), serve as the 𝑝 parameters of 

the 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙  distributions Number of Wins, Number of Draws, and Number of Loses 

respectively††.  

                                                           
†† Effectively a 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 − 𝑚𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 distribution, where 𝑝(𝑊𝑖𝑛) + 𝑝(𝐷𝑟𝑎𝑤) + 𝑝(𝐿𝑜𝑠𝑒) = 1. 
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The posterior 𝐵𝑒𝑡𝑎 distributions are then used to estimate team expectations for the 

residual match instances of the current season. These team expectations allow expert 

modifications based on subjective beliefs regarding the difficulty of residual opponents (this 

indication allows the expert to diminish the bias in cases where the results are formulated on 

the basis of mostly poor/high quality opponents). Observed and expected cumulative match 

points are then considered for formulating the prior distributions of 𝑆. This is the first part (out 

of two) of level 1. The Bayesian network component 𝑃 is illustrated in Figure 2, where: 

 

a) the variables 𝑝(𝑊𝑖𝑛), 𝑝(𝐷𝑟𝑎𝑤) and 𝑝(𝐿𝑜𝑠𝑒) are the 𝐵𝑒𝑡𝑎 distributions. For example, 

in the case of 𝑝(𝑊𝑖𝑛) the hyperparameters are ~𝐵𝑒𝑡𝑎(𝑤 + 1, 𝑑 + 𝑙 + 2)‡‡, where 𝑤 

is the number of previous season’s wins, 𝑑 is the number of draws, 𝑙 is the number of 

losses, and values 1 and 2 are introduced for minimal Laplacian smoothing so that we 

avoid overfitting by ensuring that posterior parameters 𝑎𝑙𝑝ℎ𝑎 and 𝑏𝑒𝑡𝑎 are positive for 

all teams; 

 

b) the variables Number of Wins, Number of Draws and Number of Loses are 

~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝑝). For example in the case of Number of Wins, 𝑛 is the number of 

matches played during the current season and 𝑝 is the probability of success for each 

trial (for this example 𝑝 is the 𝐵𝑒𝑡𝑎 distribution 𝑝(𝑤𝑖𝑛)); 
 

c) the variable Expected Residual Points (𝜋𝑝) represents the points a team expects to 

accumulate over the current season’s residual match instances and hence, 𝜋𝑝  is 

dependent on the Number of residual matches and the posterior 𝐵𝑒𝑡𝑎  beliefs of 

𝑝(𝑊𝑖𝑛), 𝑝(𝐷𝑟𝑎𝑤) and 𝑝(𝐿𝑜𝑠𝑒)§§; 

 

d) the variable ERP given opponent difficulty (𝜋𝑒) is a 𝜋𝑝 posterior given the Difficulty of 

residual opponents (𝜓), whereby 𝜋𝑒 may receive adjustments for up to ±10% based 

on a 7-level subjective belief, and it is defined as the case function of: 

 

πe =

{
 
 
 
 

 
 
 
 

min(114, πp × 1.1), πp,ψ = Lowest

min(114, πp × 1.0666), πp,ψ = Very Low

min(114, πp × 1.0333), πp,ψ = Low

min(114, πp), πp,ψ = Normal

min(114, πp × 0.9666), πp,ψ = High

min(114, πp × 0.9333), πp,ψ = Very High

min(114, πp × 0.9), πp,ψ = Highest

 

 

e) the variable Current Points simply represents the total number of points accumulated 

over the current season and hence, it is dependent on the relevant 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 
observations (see Table G.1 for details); 

 

f) Team Strength (𝑆) is then simply the sum of Current Points and 𝜋𝑒. 
 

                                                           
‡‡ Hyperparameters are provided as node-inputs and are not shown in Figure 2. 
§§ We do not perform convolution but we instead perform aggregation of averages (which means that the variance 

might be overestimated) in order to keep the complexity of the model at significantly lower levels. 
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Figure 2. Level 1 Component (𝑃): formulating the 𝑆 prior. Figure G.2 presents an example of this component 

with different scenarios. Dashed nodes indicate latent variables***. 

 

The component inconsistency (𝐼)  approximates a team’s inconsistency based on 

respective league point totals over the five most recent seasons, and the resulting variance is 

added to the prior predictive distribution of 𝑆 and together formulate 𝑆𝐿1. Figure 3 presents a 

naive parameter learning procedure for approximating a team’s inconsistency, where: 

 

a) the variables Season 𝑌1 to 𝑌5 are ~𝑇𝑁𝑜𝑟𝑚𝑎𝑙(µ, 𝜎2, 0, 114); 
 

b) the variable Inconsistency (Variance) (𝑉) is a ~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 150)††† and serves as the 

input 𝜎2 for the 𝑇𝑁𝑜𝑟𝑚𝑎𝑙 distributions of (a) above; 

 

c) the variable Overall Performance is a ~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 114) and serves as the input µ for 

the 𝑇𝑁𝑜𝑟𝑚𝑎𝑙 distributions of (a) above. 

                                                           
*** The variables Current Points, Number of matches played and Number of residual matches are definitional 

variables 
††† Upper bound is 150 rather than 114 to account for the limited number of parameters learned. 
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  Moreover, the variable Confidence in Historical Inconsistency (𝐶) , presented in 

Figures 1 and G.1, gives the option to the expert to diminish the additional variance 𝑉 if the 

expert feels that the team is not currently as inconsistent as it used to be over the period of the 

last five seasons. The case function below shows how 𝑉, which serves as an input for 𝑆𝐿1, can 

diminish in value based on the subjective indication of 𝐶: 

 

SL1 =

{
 
 

 
 TNormal (S,

V

3
, 0, 114) , S, C = Low

TNormal (S,
V

2
, 0, 114) , S, C = Medium

TNormal(S, V, 0, 114), S, C = High

 

 

 
 

Figure 3. Level 1 Component (𝐼): measuring a team’s Inconsistency (Variance) (𝑉) based on league point totals 

over the five most recent seasons. Figure G.3 presents an example of this component with different scenarios. 

Dashed nodes indicate latent variables. 

 

2.2. Level 2 Component: Team Form (𝐹) 
 

At level 2 posterior predictive distributions of 𝑆𝐿2 are formulated given 𝑆𝐿1 and a posterior 

team-form (𝛷), as presented in Figures 4 and G.4, where 𝛷 is a continuous variable on a scale 

that goes from 0 to 1. A value close to 0.5 suggests that the team is performing as expected, 

whereas a higher value indicates that the team is performing better than expected (and vice 

versa). The expectations are determined by the forecasts generated by this model, and 𝛷 is 

measured on the basis of the five most recent gameweeks‡‡‡.  

 The 𝛷 posterior is formulated hierarchically based on the Availability of players who 

resulted in current form (𝐿𝐴) and the Important players return (𝐿𝑅), where both variables 

follow ordinal scale distributions with subjective indications as illustrated in Figures 4, G.4 and 

the case functions below. The variable Expected Form given player availability (𝛷𝐿𝐴) is the 

case function: 

 

                                                           
‡‡‡ A complete EPL season consists of 38 gameweeks. 
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ΦLA =

{
 
 

 
 

TNormal(Φ, 0.0001, 0, 1), 𝛷, LA = Very High

TNormal((Φ × 0.8), 0.001, 0, 1), 𝛷, LA = High

TNormal((Φ × 0.6), 0.005, 0, 1), 𝛷, LA = Medium

TNormal((Φ × 0.4), 0.01, 0, 1), 𝛷, LA = Low

TNormal((Φ × 0.2), 0.05, 0, 1), 𝛷, LA = Very Low

 

 

and the variable Expected form given further important players (𝛷𝐿𝐴) is the case function: 

 

ΦLR =

{
  
 

  
 

TNormal(ΦLA, 0.01, 0, 1), ΦLA, LR = None

TNormal ((ΦLA + ((1 − ΦLA) × 0.1)) , 0.01, 0, 1) , ΦLA, LR = Low

TNormal ((ΦLA + ((1 − ΦLA) × 0.2)) , 0.01, 0, 1) , ΦLA, LR = Medium

TNormal ((ΦLA + ((1 − ΦLA) × 0.3)) , 0.01, 0, 1) , ΦLA, LR = High

 

 

 
 
Figure 4. Level 2 Component (𝐹): measuring expected form 𝛷𝐿𝑅 . Figure G.4 presents an example of this 

component with different scenarios. Dashed nodes indicate latent variables. 

 

2.3. Level 3 Component: Fatigue and Motivation (𝑀) 
 

At level 3 posterior predictive distributions of 𝑆𝐿3  are formulated given 𝑆𝐿2  and 𝛷𝐿𝑅  as 

presented in Figure 5. A Prior Fatigue (𝐺𝑝) is first measured given EU match Involvement (𝐸) 
(which represents team involvement in European tournaments) and Toughness of previous 

match (𝑇), where 𝐸  and 𝑇  follow ordinal scale distributions with subjective indications as 

illustrated in Figures 5, G.5, and the case function of 𝐺𝑝 below: 

  

Gp =

{
 
 
 
 
 
 

 
 
 
 
 
 

TNormal(T, 0.001, 0, 1), 𝑇, E = None

TNormal ((T + (1 − T) ×
1

6
) , 0.001, 0, 1) , 𝑇, E = Very Low

TNormal ((T + (1 − T) ×
2

6
) , 0.001, 0, 1) , 𝑇, E = Low

TNormal ((T + (1 − T) ×
3

6
) , 0.001, 0, 1) , 𝑇, E = Medium

TNormal ((T + (1 − T) ×
4

6
) , 0.001, 0, 1) , 𝑇, E = High

TNormal ((T + (1 − T) ×
5

6
) , 0.001, 0, 1) , 𝑇, E = Very High
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The Expected Fatigue (𝐺𝑒) is a posterior 𝐺𝑝 value which diminishes on the basis of Days Gap 

since previous match (𝛿), and increases with National Team Involvement (𝜆), where 𝛿 and 𝜆 

are ordinal scale distributions with subjective indications as illustrated in Figures 5, G.5, and 

the case function of 𝐺𝑒 below:  

 

Ge =

{
 
 
 
 
 

 
 
 
 
 TNormal ((Gp − Gp × δ), 0.001, 0, 1) , Gp, δ, λ = None

TNormal (((Gp − Gp × δ) + (1 − (Gp − Gp × δ)) × 0.1) , 0.001, 0, 1) , Gp, δ, λ =  Low

TNormal (((Gp − Gp × δ) + (1 − (Gp − Gp × δ)) × 0.2) , 0.001, 0, 1) , Gp, δ, λ = Medium

TNormal (((Gp − Gp × δ) + (1 − (Gp − Gp × δ)) × 0.3) , 0.001, 0, 1) , Gp, δ, λ = High

TNormal (((Gp − Gp × δ) + (1 − (Gp − Gp × δ)) × 0.4) , 0.001, 0, 1) , Gp, δ, λ = Very High

 

 

 Finally, 𝐺𝑒 is revised into Fatigue and Motivation (𝐺) given Motivation (𝜅) and Head-

to-Head Bias (𝜔), where 𝜅 and 𝜔 follow ordinal scale distributions that go from 0 to 1 with 

subjective indications as illustrated in Figures 5, G.5, and the case function of 𝐺 below: 

 

G =

{
 
 
 
 
 
 

 
 
 
 
 
 TNormal ((

κ+ ω

2
) , 0.01, 0, 1) , 𝜅,ω, Ge = Very Rested

TNormal (((
κ + ω

2
) × 0.9) , 0.01, 0, 1) , 𝜅,ω, Ge = Rested

TNormal (((
κ + ω

2
) × 0.8) , 0.01, 0, 1) , 𝜅,ω, Ge = Normal

TNormal (((
κ + ω

2
) × 0.7) , 0.01, 0, 1) , 𝜅,ω, Ge = Tired

TNormal (((
κ + ω

2
) × 0.6) , 0.01, 0, 1) , 𝜅,ω, Ge = Very Tired

 

 

 
 
Figure 5. Component 3 (𝑀): measuring expected fatigue and motivation 𝐺. Figure G.5 presents an example of 

this component with different scenarios. Dashed nodes indicate latent variables. 
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3 FORECAST PERFORMANCE BASED ON PROFITABILITY AND RISK 

 

In this section we describe how the forecasting capability of the model was assessed on the 

basis of profitability and relevant risks involved. Profitability is measured on the basis of a set 

of predetermined betting procedures. For market odds we have considered the odds with the 

highest payoff as recorded by (Football-Data, 2012) for the matches of the EPL season 

2011/12. The number of bookmaking firms considered for recording maximums ranged from 

26 to 49 per match instance§§§. 

 Naturally, the performance of a football forecast model is determined by its ability to 

generate profit against market odds. However, many researchers also consider (or solely focus) 

on various scoring rules for this purpose in an attempt to determine the accuracy of the forecasts 

against the observed results (Dixon & Coles, 1997; Rue & Salvesen, 2000; Hirotsu & Wright, 

2003; Goddard, 2005; Karlis & Ntzoufras, 2003; Goddard, 2005; Forrest et al., 2005; Joseph 

et al., 2006; Graham & Stott, 2008; Hvattum & Arntzen, 2010). Forecast assessments based on 

scoring rules have been heavily criticised because different rules may provide different 

conclusions about the forecasting capability of football forecast models (Constantinou & 

Fenton, 2012). Furthermore, in financial domains researchers have already demonstrated a 

weak relationship between various accuracy and profit measures (Leitch & Tanner, 1991), 

whereas (Wing et al., 2007) suggested that it might be best to combine accuracy and profit 

measures for a more informative picture.  

 In this paper we are interested in the profitability of the model relative to market odds. 

For this to happen, market odds have to be sufficiently less accurate (or inefficient) relative to 

those generated by our model so that the bookmakers' profit margin, where present, can be 

overcome. The bookmakers' profit margin, sometimes also called 'over-round', refers to the 

margin by which the sum of published market probabilities of the total outcomes exceeds 1. 

For example, if the true (i.e. the initially measured) probabilities for a match instance are 

𝑝(𝑊𝑖𝑛) = 0.50 , 𝑝(𝐷𝑟𝑎𝑤) = 0.25  and 𝑝(𝐿𝑜𝑠𝑒) = 0.25 , a bookmaker’s published 

probabilities might be 𝑝(𝑊𝑖𝑛) = 0.52, 𝑝(𝐷𝑟𝑎𝑤) = 0.26 and 𝑝(𝐿𝑜𝑠𝑒) = 0.26 (which result 

in lower odds for payoff) and hence, the sum of published probabilities exceeds 1. The 

bookmaker's profit margin here is simply  (𝑝(𝑊𝑖𝑛) + 𝑝(𝐷𝑟𝑎𝑤) + 𝑝(𝐿𝑜𝑠𝑒)) − 1; which in 

this case would be 4%. 

 Since profitability is not only dependent on the forecasting capability of a model 

relative to market odds but also on the specified betting methodology, we have introduced an 

array of such betting procedures. For each procedure, we introduce sensible modifications 

relative to the standard betting strategy that was proposed and considered by the vast majority 

of the previous relevant published papers, whereby a bet is placed when expectations exceed a 

predetermined level (Pope & Peel, 1989; Dixon & Coles, 1997; Rue & Salvesen, 2000; Dixon 

& Pope, 2004; Goddard & Asimakopoulos, 2004; Forrest et al., 2005; Graham & Stott, 2008; 

Hvattum & Arntzen, 2010; Constantinou et al., 2012). 

 

3.1.    Defining Profitability 

 

We measure the profitability on the basis of the quantity of profit (or net profit which is stated 

as unit-based returns), rather than on the basis of percentage returns relative to respective 

stakes. The example below illustrates the rationale behind our preference. 

 
                                                           
§§§ Betfair odds are not considered within the dataset since Betfair is a betting exchange company whereby 

published odds constantly fluctuate. These odds are normally the best possible odds (i.e. with the highest payoff) 

a bettor can find online. However, unlike traditional bookmakers Betfair will deduct a fixed % from your winnings 

which ranges from 2% to 6% depending on membership status (Betfair, 2000). 
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 Example: Suppose we have two football forecast models 𝛼 and 𝛽. We want to compare 

their performance on the basis of profitability given the set of five match instances 

{𝑀1, 𝑀2,𝑀3,𝑀4,𝑀5}. Table 2 presents a hypothetical betting performance between the 

two models over those match instances.  

 
Table 2. Hypothetical betting performance on the basis of profitability between two models 

 𝛼 𝛽 

Match 

Instance 

Stake Return Profit/ 

Loss 

Profit 

Rate 

Stake Return Profit/ 

Loss 

Profit 

Rate 

𝑀1 £0 £0 - - £100 £200 +£100 100% 

𝑀2 £100 £200 +£100 100% £100 £200 +£100 100% 

𝑀3 £0 £0 - - £100 £0 -£100 -100% 

𝑀4 £0 £0 - - £100 £200 +£100 100% 

𝑀5 £100 £200 +£100 100% £100 £200 +£100 100% 

Total £200 £400 +£200 100%* £500 £800 +£300 60%* 

 

 *Profit rate based on total stakes. 

 

After considering the five match instances we observe the following results****: 

 

 Model 𝛼 suggested two bets and both were successful (100% winning rate), returning 

a net profit of £200 which represents a profit rate of 100% relative to total stakes. 

 Model 𝛽 suggested five bets and four of them were successful (80% winning rate), 

returning a net profit of £300 which represents a profit rate of 60% relative to total 

stakes. 

 

An evaluation based on the percentage profit rates would have erroneously considered model 

𝛽 as being inferior at picking winners than model 𝛼. But, such an evaluation fails to consider 

the possibility that model 𝛼 might have failed to discover potential advantages against the 

market for all of the match instances. The reality is that model 𝛽 managed to simulate riskier 

bets that reduced the percentage rates of winning and profit, but increased net profit due to the 

larger number of successful bets. 

 We have to choose which model is best to follow; model 𝛼 with a higher winning rate 

on bets and a higher profit rate between stakes and returns, or model 𝛽 with a higher (33.33%) 

net profit? If the ultimate aim is to make money, then every bettor would have preferred model 

𝛽 over model 𝛼 for betting against the market. Therefore, we suggest that a bettor should be 

increasing net profit rather than establishing good winning percentage rates, and for this to 

happen a bettor is expected to consider all of his advantages presented at every match instance 

rather than choosing the 'best' of his advantages that occasionally arise.  

 Consequently, in this paper we measure profitability on unit-based returns (net profit) 

over 𝑛 match instances (in our case 𝑛 =380, the total number of matches played in the EPL 

season of 2011/12). The betting procedures are defined in the following section. 

 

3.2. Defining the Betting Procedures 

 

We define the following set of betting procedures for evaluating the profitability of the model 

against the market: 

 

                                                           
**** For simplification we assume identical stakes (£100) and odds for payoff (evens; or 2.00 in decimal form). 
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1. (𝐵𝑃1): For each match instance, place a fixed bet equal to a single unit on the outcome 

with the highest absolute percentage discrepancy, where the model predicts the higher 

probability, if and only if the discrepancy is ≥ 𝑛% (where 𝑛 is an integer 0 ≤ 𝑛 ≤ 15); 

 

2. (𝐵𝑃2): For each match instance, place a fixed bet equal to a single unit on every outcome 

the model predicts with higher probability, if and only if the absolute discrepancy is ≥
𝑛%; 

 

3. (𝐵𝑃3): For each match instance, place a bet equal to 𝑈 units for each outcome the model 

predicts with higher probability, where the stake of the bet is a real number equal to the 

absolute discrepancy percentage between outcomes multiplied by 𝑈 (e.g. if an absolute 

discrepancy of 4.45%  and 1.17%  is observed for outcomes 𝐻  and 𝐷  respectively 

while 𝑈 = 1, then bets of £4.45 and £1.17 are simulated for a home win and a draw 

respectively); 

 

4. (𝐵𝑃4): For each match instance, place a bet equal to 𝑈 units for each outcome the model 

predicts with higher probability, where the stake of the bet is a real number equal to the 

relative discrepancy percentage between outcomes multiplied by 𝑈 (e.g. if a relative 

discrepancy of 4.45%  and 1.17%  is observed for outcomes 𝐻  and 𝐷  respectively 

while 𝑈 = 1, then bets of £4.45 and £1.17 are simulated for a home win and a draw 

respectively); 

 

5. (𝐵𝑃5.1, 𝐵𝑃5.2, 𝐵𝑃5.3, 𝐵𝑃5.4,): These apply only to match instances where arbitrage†††† 

opportunities are discovered. Repeat 1, 2, 3 and 4 but substitute the betting procedure 

with arbitrage bets whereby the total amount of the three bets is equal to the bankroll 

available at that time (a bankroll specification is required prior to initialising the betting 

simulation, and tests are performed for different bankroll values). 

 

If a betting procedure 𝐴  indicates higher profitability than another 𝐵  over a fixed 

number of match instances, it does not necessarily suggest that we should always choose 𝐴 

over 𝐵. This is true if we are also interested in the risks involved and the level of uncertainty 

over the posterior predicted distribution of unit-based returns (i.e. the magnitude of potential 

losses and winnings as well as the probability associated with such events). Accordingly, we 

have constructed a simple Bayesian network component (Figure 6) that measures the risk of 

ending with less than, or equal to, a specified number of units over a specified number of match 

instances. Figure 6 illustrates, as an example, the risk of ending with 𝑈 ≤ 0 after bets are 

simulated (given 𝐵𝑃1 at discrepancy levels of 0%) on the 380 match instances. This assumes 

relevant model performances as demonstrated in Section 4 below. In particular, 

 

a) the variable Match Instances represents the number of match instances over which the 

risk is measured; 

 

                                                           
†††† "An arbitrage opportunity is simply an opportunity whereby profit is guaranteed on the basis of a negative 

profit margin which results by combining the odds published by the various bookmaking firms. In particular, 

arbitrage opportunities depend on two factors: a) the divergence in outcome probabilities between bookmaking 

firms and b) the profit margin by each bookmaker. Negative profit margin is simply a scenario where a set of 

𝐻𝐷𝐴 probabilities is found (for a single match instance) in which the sum of the probabilities within that set is 

< 1. Hence, profit for the bettor can be guaranteed if the bets are placed such that the return is identical whatever 

the outcome." (Constantinou & Fenton, 2013b). 
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b) the variables p(profitable) and p(unprofitable) are 𝐵𝑒𝑡𝑎 distributions with 𝑎𝑙𝑝ℎ𝑎 and 

𝑏𝑒𝑡𝑎 hyperparameters representing the probability to profit (and not to profit) for each 

match instance simulated; 

 

c) the variables Estimated Unprofitable Instances and Estimated Profitable Instances are 

𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 distributions with 𝑛 number of trials equal to (a) above, where input 𝑝 is the 

respective 𝐵𝑒𝑡𝑎 distribution of (b) above; 

 

d) the variables Profit Rate and Loss Rate are averaged values associated with observed 

profit and loss for respective match instances; 

 

e) the variables Expected Loss and Expected Profit are posterior predictive density 

functions which represent the overall loss/profit given (c) and (d) above; 

 

f) the variable Estimated Profit & Loss is the summary probability density function given 

(e); 

 

g) the variable Less than, or Equal to 0 Units is the probability of ending at, or below the 

specified value of U given (f) above.  

 

 
 

Figure 6. Bayesian network component for assessing the risks, of accumulating returns below 𝑛 units, for each of 

the betting procedures. An example of how the risk of ending with  𝑈 ≤ 0  can be measured given 𝐵𝑃1  at 

discrepancy levels of 0%. 
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4 RESULTS AND DISCUSSION 

 

In this section we demonstrate and discuss the resulting performance of the model. In 

Section 4.1 we demonstrate the profitability of the model along with the relevant risks involved 

with each of the betting procedures; in Section 4.2 we evaluate the effectiveness of the model 

components based on the transitions of profitability at each hierarchical component level; in 

Section 4.3 we provide evidence of market inefficiency based on specific football teams; 

finally, in Section 4.4 we compare the performance of the model against the model presented 

in (Constantinou et al., 2012). 

 

4.1. Model Performance 

 

Table 3 presents the amount of bets simulated and unit-based returns (along with the frequency 

rates of successful bets and profit rate relative to stakes for procedures 𝐵𝑃1 and 𝐵𝑃2) at the 

specified discrepancy levels. Figure 7 illustrates a summary comparison between the two 

betting procedures. In general, under both procedures the model appears to be profitable at 

discrepancy levels up to 10% , but unprofitable thereafter. In particular, for 𝐵𝑃1  the 

profitability appears to be consistent up to that point, with the highest returns of 𝑈17.45 and 

𝑈17.34 observed at discrepancy levels of 6% and 1% respectively. In contrast, 𝐵𝑃2 generated 

maximum returns that are substantially higher relative to 𝐵𝑃1; returns of 𝑈47.71 and 𝑈47.13 

at discrepancy levels of 0% and 1% respectively. Figures A.1 and A.2 compare the cumulative 

returns over the season between the two betting procedures; the results show that 𝐵𝑃2 

consistently generates higher returns than 𝐵𝑃1  throughout the period and at almost every 

discrepancy level.  

 At discrepancy levels of ≥ 11% 𝐵𝑃2 essentially mimics the betting simulation of 𝐵𝑃1 

since it becomes unlikely for probabilities of paired match instances (model and market) to 

encompass more than one outcome at such high discrepancy levels. At discrepancy levels of 

≥ 10% the model appears to be unprofitable, with betting trials in the range of 33 and 84. 

However, it would not be safe to formulate conclusions on the basis of model performances at 

such high discrepancy levels. We explain why next. 

 For 𝐵𝑃1 and 𝐵𝑃2, it is important to note that we are much more confident about results 

generated at lower discrepancy levels, since at those levels the number of bets simulated is 

sufficiently high for us to formulate safe conclusions. As the discrepancy levels increase, the 

number of betting trials inevitably decreases. Yet, at higher discrepancy levels we actually 

require more betting trials to formulate conclusions that are as safe as those at the lower levels. 

To understand why, assume that we have simulated 50 bets at discrepancy levels of ≥ 11%. 

Among the 50 there will be lots of instances of the following: 

 

a) Team 𝐴 plays 𝐵 and 𝐴 is a strong favourite, but not as strong as the bookies think. 

Consequently, the bookies offer a probability of just 5% that team 𝐵 wins. The model, 

however rates the probability as 17% and so we bet on team 𝐵 to win (if we consider 

discrepancy levels of ≥ 12%). If the model is 'correct' we would still only win about 

once every eight match instances of this 'type'. Therefore, 50 trials is not a sufficiently 

high number to formulate conclusions. For instance, Figure 7 shows that an additional 

successful bet at decimal odds of approximately 15.00 would lead to profitable returns 

at almost all of the discrepancy levels above 10%, which demonstrates the high level 

of uncertainty. 

 

b) Team 𝐴 plays 𝐵 and 𝐴 is a strong favourite, but stronger than the bookies think. The 

bookies offer a probability of 70%  that team 𝐴  wins, while the model rates the 
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probability as 82%. So we bet on team 𝐴 to win (again, if we consider discrepancy 

levels of ≥ 12%). If the model is 'correct' we would win about four times for every five 

bets simulated. In this case, most bets win. However, when they periodically occur the 

returns from winning match instances are too small to compensate for the high 

uncertainty generated on the basis of numerous instances of (a). 

 

It should also be noted that the occurrence rate of the above two cases is likely to be affected 

by the well known phenomenon of the favourite longshot-bias observed by the markets‡‡‡‡. 

 
Table 3. Unit based profit and profitability rates based on 𝐵𝑃1 and 𝐵𝑃2. 

 
 Betting Procedure 1 (𝐵𝑃1) Betting Procedure 2 (𝐵𝑃2) 

Discrep. 

levels 

(%) 

Bets/ 

Trials 

Win 

Rate 

P/L 

(Units) 

Profit 

Rate 

Bets/ 

Trials 

Win 

Rate 

P/L 

(Units) 

Profit 

Rate 

0 379 34.30% 15.25 4.02% 575 31.83% 47.71 8.30% 

1 359 34.54% 17.34 4.83% 495 32.53% 47.13 9.52% 

2 316 34.49% 15.52 4.91% 403 32.75% 36.95 9.17% 

3 272 34.19% 5.09 1.87% 319 31.97% 7.63 2.39% 

4 227 35.24% 13.03 5.74% 257 33.85% 24.74 9.63% 

5 193 35.23% 11.53 5.97% 211 34.12% 20.87 9.89% 

6 168 35.71% 17.45 10.39% 179 34.64% 23.74 13.26% 

7 144 37.50% 8.6 5.97% 150 36.67% 15.84 10.56% 

8 129 38.76% 15.22 11.80% 131 38.17% 13.22 10.09% 

9 107 37.38% -3.67 -3.43% 108 37.04% -4.67 -4.32% 

10 97 39.18% 3.31 3.41% 97 39.18% 3.31 3.41% 

11 84 35.71% -2.77 -3.30% 84 35.71% -2.77 -3.30% 

12 67 34.33% -6.42 -9.58% 67 34.33% -6.42 -9.58% 

13 53 30.19% -17.02 -32.11% 53 30.19% -17.02 -32.11% 

14 38 34.21% -6.88 -18.11% 38 34.21% -6.88 -18.11% 

15 

 

33 

 

36.36% 

 

-6.28 

 

-19.03% 

 

33 

 

36.36% 

 

-6.28 

 

-19.03% 

 

 

 
 

Figure 7. Unit-based returns based on 𝐵𝑃1 and 𝐵𝑃2, and according to the specified level of discrepancy. 

 

                                                           
‡‡‡‡ The phenomenon whereby bettors have a preference in backing risky outcomes and hence, bookmakers offer 

more-than-fair odds to 'safe' outcomes, and less-than-fair odds to 'risky' outcomes. This phenomenon is not only 

observed in football but also in many different markets (Ali M., 1977; Quandt, 1986; Thaler & Ziemba, 1988; 

Shin H., 1991, Shin R. E., 1992; Shin H., 1993; Woodland & Woodland, 1994; Vaughn Williams & Paton, 1997; 

Golec & Tamarkin, 1998; Jullien & Salanie, 2000; Constantinou & Fenton, 2013b). Various theories exist, such 

as risk-loving behaviour, on why people are willing to bet on such uncertain propositions (Sobel & Raines, 2003; 

Snowberg, 2010). 
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 Figures 8 and 9 demonstrate the cumulative unit-based returns given 𝐵𝑃3  and 𝐵𝑃4 

respectively. In both cases, considerably higher returns are generated relative to 𝐵𝑃1 and 𝐵𝑃2. 

In particular, the conlcuding balance of 𝐵𝑃3 at match instance 380 is 𝑈180.34, whereas for 

𝐵𝑃4 it is 𝑈922.97. Since 𝐵𝑃4 is a replicative version of 𝐵𝑃3 (with the difference that stakes 

generated are based on the relative, rather than the absolute, discrepancy of model to market 

probabilities), it is normal for 𝐵𝑃4 to generate cumulative returns that are excessive versions of 

those of 𝐵𝑃3. The cumulative distributions in Figures 8 and 9 show that 𝐵𝑃3 experienced a 

maximum loss of −𝑈43.65 (81.63% less relative to its maximum profit of 𝑈237.57), whereas 

𝐵𝑃4 experienced a maximum loss of −𝑈1,066.33 (14.54% less relative to its maximum profit 

of 𝑈1,247.86). Further, 𝐵𝑃4 remained at a state of loss for a longer period throughout the 

season, whereas 𝐵𝑃3 remained at a state of loss for only a period of 11 match instances (out of 

380). Table 4 presents the risk probability values for ending up with less than, or equal to, the 

specified concluding profit/loss balances according to the specified betting procedure, and 

Figure B.1 presents the respective predicted probability density risk distributions. 

 

 
 

Figure 8. Cumulative unit-based returns based on 𝐵𝑃3. 

 

 
 

Figure 9. Cumulative unit-based returns based on 𝐵𝑃4. 

 

4.1.1 Arbitrage opportunities and Risk Assessment 

 

There are various ways to reduce our exposure to risk. In our case, a straightforward solution 

would be to take advantage of existing arbitrage opportunities and replace the betting procedure 

with arbitrage bets when such risk free match instances are exposed. In fact, 70 match instances 

(out of the 380) allowed for risk free returns for the season under study, where arbitrage betting 

guaranteed an average profit of 0.57% per such match instance with minimum and maximum 

risk free returns at 0.03% and 1.94% respectively. Figures C.1, C.2, C.3 and C.4 demonstrate 

how the profit rate converges relative to an initialised bankroll on the basis of 𝐵𝑃5.1, 𝐵𝑃5.2, 

𝐵𝑃5.3 , and 𝐵𝑃5.4  (as described in Section 3.2). Table 4 and Figure B.1 demonstrate the 

reduction in risk and uncertainty, when taking advantage of arbitrage instances, relative to the 

respective procedures of 𝐵𝑃1 , 𝐵𝑃2 , 𝐵𝑃3 , and 𝐵𝑃4  which do not take advantage of such 
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opportunities. As expected, due to the relatively high number of arbitrage instances the 

profitability is heavily dependent on the initialised bankroll. When an arbitrage opportunity is 

discovered the bet is equal to the value of the bankroll at that specific time. Bankrolls with 

sufficiently high initialised values (i.e. ≥ 1,000  or ≥ 10,000  in this case) eventually 

overshadow the predictive performance of the model since generated returns converge towards 

the arbitrage profit rate.  

 
Table 4. Risk probability values for the specified concluding returns§§§§ per betting procedure.  

 

BP 

Expected Profit/Loss (less than) 

U1,000 U500 U100 U50 U0 -U50 -U100 -U500 -U1,000 

1 100.00% 100.00% 99.69% 87.80% 30.91% 1.36% 0.03% 0.00% 0.00% 

2 100.00% 100.00% 94.27% 53.01% 7.61% 0.23% 0.02% 0.00% 0.00% 

3 99.98% 95.13% 34.16% 25.16% 17.53% 11.60% 7.22% 0.08% 0.01% 

4 53.95% 32.70% 18.63% 17.19% 15.76% 14.49% 13.24% 5.95% 1.72% 

5.1 100.00% 81.21% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

5.2 100.00% 66.56% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

5.3 97.80% 16.32% 0.08% 0.05% 0.02% 0.01% 0.01% 0.00% 0.00% 

5.4 

 

61.56% 

 

31.19% 

 

13.20% 

 

11.65% 

 

10.10% 

 

8.86% 

 

7.65% 

 

2.06% 

 

0.27% 

 

 

4.2. Effectiveness of model components 

 

Figures 10, 11 and 12 demonstrate the transitions of profitability at component levels 1, 2 and 

3 given 𝐵𝑃1, 𝐵𝑃2, 𝐵𝑃3 and 𝐵𝑃4. We observe that the model component at level 2 (team form) 

generates profitability that is substantially superior to that of level 1, for all of the betting 

procedures. However, profitability is reduced at level 3 (team fatigue and motivation). We have 

therefore analysed the sub-parameters of that component in an attempt to investigate how they 

have negatively affected the performance of the model relative to market odds. Figures D.1, 

D.2, D.3, and D.4 demonstrate the profitability of the model over procedures 𝐵𝑃1, 𝐵𝑃2, 𝐵𝑃3 

and 𝐵𝑃4 when: 

  

a) we only consider match instances with evidence of fatigue (but no evidence of 

motivation); 

b) we only consider match instances with evidence of motivation (but no evidence of 

fatigue); 

c) we only consider match instances with evidence of both fatigue and motivation; 

d) we only consider match instances where neither evidence of fatigue nor evidence of 

motivation exist. 

 

Assuming that we rank profitability-based performances from 1 to 4 (1 being best), the results 

suggest that evidence of fatigue provided the worse overall performance with resulting ranks 

of 3, 4, 4 and 4 under procedures 𝐵𝑃1, 𝐵𝑃2, 𝐵𝑃3 and 𝐵𝑃4 respectively. This suggests that we 

have, most likely, overestimated the negative impact of fatigue for a team (i.e. the number of 

days gap since last competing match, the toughness of previous match, the involvement in 

European competitions, and player participation with their national team). On the other hand, 

motivation (whereby the quality of the input is predominantly dependent on the expert) 

provided performances with resulting ranks of 4, 1, 3 and 1 under the four respective betting 

                                                           
§§§§ Results assume no discrepancy restrictions (set to 0%) for 𝐵𝑃1, 𝐵𝑃2, 𝐵𝑃5.1, 𝐵𝑃5.2, and an initialised bankroll 

of 10,000 for the betting procedures of series 5. 
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procedures, and signs of improvement (relative to test (d)) in forecasting capability are 

observed only under two of the four betting procedures. 

  

 
 

Figure 10. Cumulative unit-based returns based on 𝐵𝑃1 and 𝐵𝑃2, for component levels 1, 2 and 3. 

 

 
 

Figure 11. Cumulative unit-based returns based on 𝐵𝑃3, for component levels 1, 2 and 3. 

 

 
 

Figure 12. Cumulative unit-based returns based on 𝐵𝑃4, for component levels 1, 2 and 3. 
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4.3. Team-based market inefficiency 

 

The results reported in this section add further evidence of market inefficiency to an already 

extensive list, particularly in the presence of regular predetermined biases, arbitrage 

opportunities, as well as conflicting daily adjustments in published odds between firms 

(Constantinou & Fenton, 2013b). We also considered a team-based profitability assessment 

(see Table 5), where the percentage values represent the returns 𝑈 of a team relative to the 

returns over all teams based on the specified betting procedure*****.  

Our results demonstrate notable differences in profitability for five out of the twenty 

teams. In particular, for match instances involving Liverpool, QPR, Arsenal and Newcastle our 

model generated notably higher returns relative to the overall team, whereas for match 

instances involving Chelsea our model generated notably lower returns. Figure E.1 illustrates 

the team-based explicit returns throughout the season against market odds for the above five 

teams. Results show that: 

 

a) market odds overestimated the performances of Liverpool at a consistent rate, and 

particularly over the final third of the season (during which Liverpool accumulated only 

10 points during their last 10 matches). This allowed our model to generate profitable 

returns during the specified period; 

 

b) as in (a), the same applies to Arsenal but to a lower extent. This allowed our model to 

generate profitable returns during the specified period; 

 

c) market odds underestimated the performances of Newcastle at a consistent rate, and 

particularly over the first half of the season. It is important to note that Newcastle 

finished at position 5 with 65 points after being promoted to the EPL only a season 

earlier. This allowed our model to generate profitable returns during the specified 

period; 

 

d) we do not consider that market odds underestimated performances of QPR at the 

absence of consistency and high uncertainty in returns; profit was generated due to a 

pair of match instances with excessive returns; 

 

e) our model overestimated the performances of Chelsea, particularly over the first two 

thirds of the season, at a consistent rate. This is highly likely to be due to Chelsea's 

erratic performances under a new manager who was eventually sacked during that 

period. This led our model to generate unprofitable returns during the specified period. 

The returns over the final third of the season, during which Chelsea provided more 

consistent performances under a new manager, appear to be evened. 

 

 

 

 

 

 

 

 
 

                                                           
***** If for the specified betting procedure a team generates returns 𝐴 which are equal to the returns 𝐵 generated 

by all of the teams (overall), then team 𝐴 is 100% related to set B. 
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Table 5. Team-based returns relative to overall returns for the specified betting procedure. 

 
  Betting Procedure:  

Rank Team 1 2 3 4 5.1. 5.2. 5.3. 5.4. Average 

1 Man City -28.00% -21.59% -17.96% -36.49% 9.88% 9.75% 8.93% 3.65% -8.98% 

2 Man Utd -37.57% -14.46% 21.83% -24.01% 6.35% 6.34% 8.05% 6.47% -3.37% 

3 Arsenal 111.74% 49.49% 68.91% 59.98% 4.82% 4.93% 7.18% 16.71% 40.47% 

4 Tottenham -25.84% 15.97% 32.22% 8.78% 12.14% 12.07% 12.39% 9.77% 9.69% 

5 Newcastle 76.20% 19.77% 83.19% 39.44% 10.43% 10.33% 13.22% 19.25% 33.98% 

6 Chelsea -97.38% -9.16% -108.64% -112.74% 11.51% 11.80% 9.60% 3.11% -36.49% 

7 Everton -32.39% -12.66% -27.98% -30.82% 13.82% 13.82% 12.75% 9.55% -6.74% 

8 Liverpool 175.87% 76.32% 192.25% 237.84% 27.83% 27.69% 29.59% 36.40% 100.47% 

9 Fulham -25.18% 17.84% -10.08% 7.17% 5.66% 5.94% 5.30% 7.18% 1.73% 

10 West Brom 62.23% -8.55% 23.44% 31.22% 14.67% 14.38% 14.67% 15.96% 21.00% 

11 Swansea 59.54% 2.68% -7.67% 7.64% 7.29% 7.09% 6.31% 6.29% 11.15% 

12 Norwich -55.93% 2.45% -47.79% -32.66% 7.72% 7.65% 6.92% 4.51% -13.39% 

13 Sunderland -15.61% 9.47% -24.50% -24.76% 4.52% 4.52% 4.42% 3.06% -4.86% 

14 Stoke 16.79% 36.62% 15.39% -12.31% 6.88% 7.24% 7.41% 5.75% 10.47% 

15 Wigan -121.84% 4.38% 3.66% 95.50% 9.06% 9.22% 7.78% 8.09% 1.98% 

16 Aston Villa -70.95% 20.29% -25.35% -20.34% 7.23% 7.73% 6.39% 4.33% -8.83% 

17 QPR 128.59% 17.80% 59.61% 91.06% 4.88% 4.69% 6.01% 19.33% 41.50% 

18 Bolton 29.70% 2.62% 5.47% -2.27% 7.36% 7.25% 7.65% 9.16% 8.37% 

19 Blackburn -9.84% -24.90% -33.66% -52.58% 11.20% 10.95% 9.99% 3.39% -10.68% 

20 

 

Wolves 

 

59.87% 

 

15.64% 

 

-2.34% 

 

-29.65% 

 

16.73% 

 

16.62% 

 

15.45% 

 

8.03% 

 

12.55% 

 

 

4.4. Performance comparison against the previously published BN model 

 

Figures F.1, F.2 and F.3 compare the unit-based cumulative returns over a period of 380 match 

instances (but for different seasons†††††) between the two models. The results show that the 

new model generates superior returns under all of the betting procedures‡‡‡‡‡. In particular, for 

𝐵𝑃1  and 𝐵𝑃2  the new model generated increased net-profit of 33.67%  and 210.98% 

respectively. An interesting distinction between the two models (according to the first two 

betting procedures) is that the previous model provides higher profit rates but lower net-profit 

due to the significantly lower number of bets simulated (as discussed in Section 3.1, and Tables 

3 and 6 verify this behaviour). Further, for scenarios 𝐵𝑃3 and 𝐵𝑃4 the new model generates 

respective net-profit that is 158.43% and 49.68% higher relative to respective returns from 

the previous model. 

 

 

 

 

 

 

 

 

 

 

 

                                                           
††††† We compare the forecasting capability between the two models relative to market odds, where the old version 

was assessed over the EPL season 2010-2011, and the new version (presented in this paper) over the EPL season 

2011-12. 
‡‡‡‡‡ Following the discussion in Section 4.1, we have ignored the scenarios whereby the discrepancy levels of 

𝐵𝑃1 and 𝐵𝑃2 are set to ≥ 11%. 



24 
 

Table 6. Previous model’s profitability based on 𝐵𝑃1 and 𝐵𝑃2 (for season 2010-2011) 

 
 Betting Procedure 1 (BP1) Betting Procedure 2 (BP2) 

Discrep. 

levels 

(%) 

Bets/ 

Trials 

Win 

Rate 

P/L 

(Units) 

Profit 

Rate 

Bets/ 

Trials 

Win 

Rate 

P/L 

(Units) 

Profit 

Rate 

0 378 34.66% 5.70 1.51% 571 31.87% 15.55 2.72% 

1 358 33.52% -1.76 -0.49% 485 31.34% -5.55 -1.14% 

2 325 32.92% -4.79 -1.47% 407 31.20% -10.67 -2.62% 

3 275 33.09% 2.85 1.04% 324 31.17% -11.19 -3.45% 

4 225 33.78% 11.87 5.28% 254 31.89% 2.30 0.91% 

5 169 33.73% 14.19 8.40% 186 32.80% 13.07 7.03% 

6 131 35.11% 17.40 13.28% 141 34.75% 19.61 13.91% 

7 107 35.51% 12.92 12.07% 111 35.14% 14.07 12.68% 

8 84 33.33% 8.43 10.04% 87 33.33% 10.58 12.16% 

9 71 33.80% 11.36 16.00% 74 33.78% 13.51 18.26% 

10 52 34.62% 10.61 20.40% 53 35.85% 14.76 27.85% 

11 41 36.59% 14.61 35.63% 41 36.59% 14.61 35.63% 

12 25 24.00% -6.95 -27.80% 25 24.00% -6.95 -27.80% 

13 15 26.67% -4.61 -30.73% 15 26.67% -4.61 -30.73% 

14 12 25.00% -3.70 -30.83% 12 25.00% -3.70 -30.83% 

15 

 

10 

 

30.00% 

 

-1.70 

 

-17.00% 

 

10 

 

30.00% 

 

-1.70 

 

-17.00% 

 

 

5 CONCLUDING REMARKS 

 

We have presented a Bayesian network (BN) model for forecasting football match outcomes 

that not only simplifies a previously publish BN model, but also provides improved forecasting 

capability. The model considers both objective and subjective information for prediction. The 

subjective information is important for prediction but is not captured in historical data. The 

model was used to generate the match forecasts for the EPL season 2011/12, and forecasts were 

published online (pi-football.com, 2010) prior to the start of each match.  

For assessing the forecast capability of our model, we have introduced an array of 

betting procedures. These are variants of a standard betting methodology previously considered 

for assessing profitability by relevant published football forecast studies. A unit-based 

profitability assessment over all betting procedures demonstrates that: 

 

a) at level 2 (team form) the model component provided inferred match forecasts that 

were substantially superior to those generated at level 1 (which were solely based on 

historical performances); 

 

b) at level 3 (team fatigue and motivation) the model component failed to provide inferred 

match forecasts that were superior to those generated at level 2. This resulted in 

concluding match forecasts with inferior profitability relative to that of level 2, but still 

superior relative to that of level 1; 

 

c) a sub-component evaluation at level 3 revealed that we have overestimated the 

negative impact introduced by evidence of fatigue, and this should serve as a lesson-

learned for relevant future models; 

 

d) despite the consequences of (b), the concluding profitability of our model was even 

superior to that generated by the previous successful and profitable model under all of 

the betting procedures; 
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e) the predictive probability density distributions of unit-based returns showed that a 

bettor’s exposure to risk increases together with the substantial profitable returns that 

𝐵𝑃3, and 𝐵𝑃4 provide over 𝐵𝑃1 and 𝐵𝑃2. However, we showed that one way a bettor 

may reduce his exposure to risk is by exploiting arbitrage opportunities which occur 

relatively frequently (70 out of the 380 match instances); 

 

f) a team-based profitability assessment revealed further market inefficiencies (to the 

already extensive list) whereby published odds are consistently biased towards the 

trademark rather than the performance of a team. 

 

Evidently, the results of our study are critically dependent on the knowledge of the 

expert. Given that the subjective model inputs were provided by a member of the research team 

(who is a football fan but definitely not an expert of the EPL), it suggests that a) subjective 

inputs can improve the forecasting capability of a model even if they are not submitted by a 

genuine expert who is a professional for the specified domain, and b) if the model were to be 

used by genuine experts we would expect that the more informed expert inputs would lead to 

posterior beliefs that are even higher in both precision and confidence. 

The results of this paper have demonstrated a number of benefits of using Bayesian 

networks: in particular they enable us to incorporate crucial subjective information easily and 

enhance our understanding of uncertainty and our exposure to the relevant risks involved. 
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APPENDIX A: Cumulative Returns based on 𝐵𝑃1 and 𝐵𝑃2 

 

 

 
 

Figure A.1. Cumulative unit-based returns based on 𝐵𝑃1 and 𝐵𝑃2 according to the specified discrepancy level. 
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Figure A.2. Cumulative unit-based returns based on 𝐵𝑃1 and 𝐵𝑃2 according to the specified discrepancy level. 
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APPENDIX B: Risk Assessment of Profit and Loss based on the specified betting procedure. 

 

 

 
 
Figure B1. Risk assessment of expected returns for each of the betting procedures. 
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APPENDIX C: Model performance when considering arbitrage opportunities. 

 

 

 
 
Figure C.1. Cumulative unit-based returns based on 𝐵𝑃5.1 assuming no discrepancy restrictions (set to 0%) and 

according to the specified bankrolls prior to initialising the betting simulation. 

 

 

 
 
Figure C.2. Cumulative unit-based returns based on 𝐵𝑃5.2 assuming no discrepancy restrictions (set to 0%) and 

according to the specified bankrolls prior to initialising the betting simulation. 
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Figure C.3. Cumulative unit-based returns based on 𝐵𝑃5.3  and according to the specified bankrolls prior to 

initialising the betting simulation. 

 

 

 

Figure C.4. Cumulative unit-based returns based on 𝐵𝑃5.4  and according to the specified bankrolls prior to 

initialising the betting simulation. 
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APPENDIX D: Performance based on parameters of component level 3 

 

 

 
 
Figure D.1. Cumulative unit-based returns based on 𝐵𝑃1 for match instances with the specified evidence. 

 

 

 
 

Figure D.2. Cumulative unit-based returns based on 𝐵𝑃2 for match instances with the specified evidence. 
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Figure D.3. Cumulative unit-based returns based on 𝐵𝑃3 for match instances with the specified evidence. 

 

 

 
 

Figure D.4. Cumulative unit-based returns based on 𝐵𝑃4 for match instances with the specified evidence. 
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APPENDIX E: Team-based efficiency 

 

 

 
 
Figure E.1. Team-based explicit returns against market odds throughout the EPL season. 
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APPENDIX F: Unit-based performance relative to the old model 

 

 
 

Figure F.1. Cumulative unit-based returns based on 𝐵𝑃1 and 𝐵𝑃2; a comparison between the new and the old 

model. 

 

 
 

Figure F.2. Cumulative unit-based returns based on 𝐵𝑃3; a comparison between the new and the old model. 

 

 
 

Figure F.3. Cumulative unit-based returns based on 𝐵𝑃4; a comparison between the new and the old model. 
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APPENDIX G: Description of model variables and actual examples of the BN model. 

 

 
Table G.1. Brief description of model variables. 

 
Model 

component 

Variable (node) 

name 

Variable type Observable/ 

Latent 

Definition Comments 

Level 1P Number of Wins Integer Interval 

(~Binomial(n. p)) 

Observable 
~Binomial (

"NumberOfMatchesPlayed.

p(Win)
) 

Used for inferring p(Win). 
Same applies to "Number 

of Draws" and "Number of 

Loses". 

Level 1P Number of 
matches played 

Integer interval 
(Arithmetic) 

Definitional Serves as hyperparameter 𝑛 for the 
variables: number of wins, draws, loses, 

and as a hyperparameter for number of 
residual matches. 

Represents the summation 
of wins, draws and loses. 

Similarly, the definition of 

"Number of residual 
matches" is 38 minus 

“Number of matches 

played”. 

Level 1P Current Points Integer interval 
(Arithmetic) 

Definitional min (
114,3 × NumberOfWins +

NumberOfDraws
)  

Level 1P p(Win) Continuous Interval 

~Beta(α,β) 
Latent ~Beta (

1 + NumberOfWins,
1 + 38 − NumberOfWins

) Assumes prior  

~Beta(1,1). Same applies 
to "p(Draw)" and 

"p(Lose)". 

Level 1P Expected 

Residual Points 

Continuous (Arithmetic) Latent 
min(

114, "NumberOfResidualMatches

× (3 × p(Win) + p(Draw))
) 

 

Level 1P Difficulty of 
residual 

opponents 

Continuous Interval 
(Ranked) 

Observable 7 ordered states from "Lowest" to 
"Highest". 

Represents subjective 
indications 

Level 1P ERP given 

opponent 
difficulty 

Continuous Interval 

(Arithmetic) 

Latent πe as defined in Section 2.1  

Level 1P Team Strength (S) 

L 

Continuous Interval 

(Arithmetic) 

Latent min (114,ERPgivenOpponentDifficulty 

+"CurrentPoints") 
 

Level 1I Inconsistency 
(Variance) 

Continuous Interval 

(~Uniform(a, b)) 

Latent ~Uniform(0,150)  

Level 1I Overall 

Performance 

(mean points) 

Continuous Interval 

(~Uniform(a, b)) 

Latent ~Uniform(0,114)  

Level 1I Season y1 Integer Interval 

(~TNormal(μ,σ2, a, b)) 

Observable 
~TNormal (

OverallPerformance,
Inconsistency. 001,0,1

) 
The same applies to 
Seasons y2 to y5. 

Level 2 Form (F) Continuous Interval 

(~TNormal(μ,σ2, a, b)) 

Observable ~TNormal(Φ, 0.001,0,1) Φ is measured outside of 
the BN (see Section 2.2) 

Level 2 Availability of 

players who 
resulted in current 

form (LA) 

Continuous Interval 

(Ranked) 

Observable 5 ordered states from "Very Low" to 

"Very High". 

Represents subjective 

indications 

Level 2 Important players 

return (or new 
transfers) (LR) 

Continuous Interval 

(Ranked) 

Observable 4 ordered states from "None" to "High". Represents subjective 

indications 

Level 2 Expected Form 

given player 
availability 

Continuous Interval 

(~TNormal(μ, σ2, a, b)) 

Latent ΦLA as defined in Section 2.2.  

Level 2 Expected form 

given further 
important players 

Continuous Interval 

(~TNormal(μ, σ2, a, b)) 

Latent ΦLR as defined in Section 2.2.  

Level 3 Toughness of 

previous match 

Continuous Interval 

(Ranked) 

Observable 5 ordered states from "Very Low" to 

"Very High". 

Represents subjective 

indications 

Level 3 EU Match 
Involvement 

Continuous Interval 
(Ranked) 

Observable 6 ordered states from "None" to "Very 
High". 

Represents subjective 
indications 

Level 3 National Team 

Involvement 

Continuous Interval 

(Ranked) 

Observable 5 ordered states from "None" to "Very 

High". 

Represents subjective 

indications 

Level 3 Days Gap Continuous Interval 

(~TNormal(μ, σ2, a, b)) 

Observable 5 ordered states from "1-2" to "6+". Represents subjective 
indications 

Level 3 Motivation Continuous Interval 

(Ranked) 

Observable 5 ordered states from "Very Low" to 

"Very High". 

Represents subjective 

indications 

Level 3 Head To Head 

Bias 

Continuous Interval 

(Ranked) 

Observable 5 states: “HT Advantage” and “AT 

Advantage”. 

Represents subjective 

indications 

Level 3 Prior Fatigue Continuous Interval 

(Ranked) 

Latent Gp as defined in Section 2.3.  
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Level 3 Expected Fatigue Continuous Interval 

(Ranked) 

Latent Ge as defined in Section 2.3.  

Level 3 Fatigue and 
Motivation 

Continuous Interval 

(~TNormal(μ, σ2, a, b)) 

Latent G as defined in Section 2.3.  

Topology Confidence in 
historical 

inconsistency 

  3 ordered states from "Low" to "High". Represents subjective 
indications 

Topology Team Strength (S) 

L1 

Continuous Interval 

(~TNormal(μ, σ2, a, b)) 

Latent SL1 as defined in Section 2.1.  

Topology Team Strength (S) 

L2 

Continuous Interval 

(~TNormal(μ, σ2, a, b)) 

Latent μ = if (Φ < 0.5) then: 

SL1 + ((114− SL1) × (0.5−  Φ)), else: 

SL1-(SL1 × (Φ − 0.5)), 
 

σ2 = 1 +ABS(Φ− 0.5) × 10, 

 

a = 0, b = 114 

The same applies to: 

"Team Strength (S) L3", 

where SL1 is replaced by 

SL2, and Φ is replaced by G 

Topology Ranked Quality 

(Level 1) 

Integer Interval 

(~TNormal(μ, σ2, a, b)) 

Latent μ = if (SL1 > 89) then: 

1, else: 

if (SL1 < 20) then: 

14, else: 

15-(
(SL1−19)

5
) 

 

σ2 = 0.01, a = 0, b = 114 

The same applies to: 

"Ranked Quality (Level 2)" 

and "Ranked Quality 

(Level 3)", where SL1 is 

replaced by SL2 and SL3 
respectively. 

Topology Level 1 Forecast Labelled Latent Estimated given historical database (i.e. 
results of match instances which 

correspond to the two SL1 parent nodes) 

The same applies to: 
"Level 2 Forecast" and 

"Final Forecast", whereby 

SL1 is replaced by SL2 and 

SL3 respectively 
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Figure G.1. A simplified representation of the overall Bayesian network model. An example based on the actual 

scenarios of the Arsenal vs. Liverpool EPL match, August 20th 2011. The observed outcome was A (0-2). 
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Figure G.2. Level 1 Component (𝑃): formulating 𝑆 prior. An example with four actual scenarios based on 

Fulham, Man City, Wigan, and Man United data, as retrieved at gameweek 37 during season 2011/12. 
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Figure G.3. Level 1 Component (𝐼): measuring a team’s historical inconsistency (𝑉) based on league point totals 

of the five most recent seasons. An example with four actual scenarios based on Fulham, Man City, Wigan and 

Man United data for the five seasons preceding EPL 2011/12. 
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Figure G.4. Level 2 Component (𝐹): measuring team form. An example with four scenarios (scenario 4 represents 

uncertain inputs whereby values follow predetermined subjective prior probabilities). 
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Figure G.5. Component 3 (𝑀): measuring fatigue and motivation. An example with four scenarios (scenario 4 

represents uncertain inputs whereby values follow predetermined subjective prior probabilities). 
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